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Figure 1: Multimodal analytics in healthcare scenarios: in a simulation-controlled room (left) and in the classroom (right). 

ABSTRACT 
Collocated, face-to-face teamwork remains a pervasive 
mode of working, which is hard to replicate online. Team 
members’ embodied, multimodal interaction with each 
other and artefacts has been studied by researchers, but 
due to its complexity, has remained opaque to automated 
analysis. However, the ready availability of sensors makes 
it increasingly affordable to instrument work spaces to 
study teamwork and groupwork. The possibility of 
visualising key aspects of a collaboration has huge 
potential for both academic and professional learning, but 
a frontline challenge is the enrichment of quantitative 
data streams with the qualitative insights needed to make 
sense of them. In response, we introduce the concept of 
collaboration translucence, an approach to make visible 
selected features of group activity. This is grounded both 
theoretically (in the physical, epistemic, social and 
affective dimensions of group activity), and contextually 
(using domain-specific concepts). We illustrate the 
approach from the automated analysis of healthcare 
simulations to train nurses, generating four visual proxies 
that fuse multimodal data into higher order patterns. 
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1 INTRODUCTION 
The ability to communicate, be an effective team/group 
member and collaborate face-to-face (f2f) are key skills for 
employability in the 21st century workplace [10]. 
Collaborating in collocated (f2f) settings provides unique 
benefits that are not easy to achieve in digitally mediated 
forms of group work [36, 65]. Literature suggests that the 
rich, multimodal communication channels in f2f 
interaction can promote social bonding [60], increase 
creativity [29, 60] and productivity [65]. However, 
learning to collaborate effectively requires practice, 
awareness of group dynamics and reflection upon past 
activities [43]. Importantly, it often needs close coaching 
by an expert facilitator to foster beneficial collaborative 
interaction [28]. However, although having a coach or 
teacher closely supervising each group would be ideal, it 
may be unrealistic in practice.  
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A promising way to address the above would be to 
capture behavioural traces from group interactions. 
Significant effort has been invested in automatically 
mining digital traces of online experiences, where logs can 
be easily captured, to make group interactions visible, 
infer patterns of behaviour and broaden our 
understanding of group activity in various contexts [18]. 
By contrast, much more needs to be done to help 
researchers, designers, and users in understanding the 
complexity of collaboration and in finding ways to 
support collaboration or learn to collaborate more 
effectively in collocated settings. 

The broad banner of Educational Data Science has been 
used to refer to areas of data-intensive research (e.g. 
intelligent tutoring systems - ITS, educational data 
mining, and learning analytics - LA) aimed at providing 
automated analysis and feedback based on learners’ 
interaction logs and other sources of evidence. However, 
it has been recently reported that there is a disconnection 
between logged data and higher order educational 
constructs [55, 75]. More problematic, decisions can be 
made and actions can be taken based on misleading 
information or not acknowledging that logged data is, by 
definition, incomplete [39]. One of the main reasons for 
such disconnection is, not surprisingly, the intrinsic lack 
of meaning in data, and their representations, that are 
often used as proxies of activity mediated by different 
interfaces (e.g. in dashboards, recommender systems, 
feedback tools) [1, 26] or to conclude generalisations 
about activity without considering the context where it 
unfolds [80]. Moreover, LA and other data-intensive 
innovations may work well for well-defined, specific 
scenarios [24]. Yet, this approach fails when trying to 
support people in complex scenarios that involve higher 
order thinking, non-computer mediated interactions, or 
ill-defined, open tasks, such as in f2f team/group work 
situations.  

Attempts to address the complexity of f2f collaboration 
through automated means exist but they have tended to 
reduce or over simplify the interaction space by slicing the 
activity, only looking at certain quantitative social aspects 
(e.g. [56]) or very specific parts of the task (e.g. micro 
formations [46], speech [56], gaze [73]). Sensors are 
becoming inexpensive and more readily available. 
However, the more sensors are used to log f2f activity the 
more complex the meaning making process to make these 
data into information becomes [12].  

In this paper, we propose an approach to give meaning 
to multimodal group activity data. Inspired by the 

metaphor of social translucence [21], we propose a vision 
to make evidence of collaboration translucent. In doing so, 
we emphasise that collaboration also involves epistemic, 
physical (the use of tools, devices and the space) and 
affective aspects besides the social realm. We build on the 
notion of quantitative ethnography [74] to give meaning 
to sensor data based on knowledge that can help explain 
such data (e.g. domain knowledge, theory) in a specific 
context. We illustrate our approach in the context of 
simulation in nursing. Simulated scenarios are 
representative of situations in which it is critical for team 
members to reflect upon evidence on different aspects of 
their activity.  

We use extracts from our research on group work in 
two authentic settings: an immersive simulation room 
(Figure 1, left) and a simulated hospital ward-classroom 
(right). In these, we capture rich multimodal data, 
including nurses’ localisation, movement, physiological 
signals, actions, voice and video. We illustrate how ideas 
from quantitative ethnography can help reveal important 
aspects of collaboration, from low level logs, to 
meaningful higher order constructs. We present four 
prototypes as exemplar ‘proxies’ of collaboration. We 
analyse how three of these can play a key role as proxies 
in terms of social dynamics; embodied strategies; and 
emotional arousal. We also present a fourth proxy shown 
to actual students after authentic in-the-wild classroom 
sessions.    

The rest of the paper is organised as follows. Next 
section provides an overview of the state-of-the-art in the 
area of collaboration analytics. Section 3 presents the 
principles underpinning our approach. In Section 4, we 
describe the studies that illustrate how our approach can 
be put into action for giving meaning to multimodal group 
data. In Section 5 we present exemplars of proxies that 
provide insights into the activity of nine teams of nursing 
students. We conclude with a discussion of the application 
of our approach and ideas for future work in Section 6.  

2 RELATED WORK 

2.1 State-of-the-art: Collaboration Analytics 
There has been a growing interest in exploring the value 
of group data to generate understanding of both 
observable and hidden patterns in f2f settings [18]. For 
example, substantial effort has been posed in extracting 
quantitative non-verbal speech features from dialogue in 
contexts such as brainstorming [38, 78], problem-solving 
[56, 66, 81], and group meetings [2, 58, 59, 63, 77].  
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Other works have looked at a wider range of aspects of 
f2f collaboration. Some studies have analysed the 
relationship between traces of physical activity (e.g. 
proximity [26], motion [7] and posture [38]) and students’ 
competencies during group tasks. Traces of head motion 
have been used to investigate how group members pay 
attention to objects and people in close proximity; 
effective social dynamics [77]; the author of meaningful 
utterances [63], or low rapport [58]. Face and hand 
tracking features, extracted from videos, have been used to 
analyse affective states [61], physical formations [76] and 
synchronicity [58]. Other studies have found that 
physiological features (e.g. electrodermal activity, hypoxic 
ventilatory response) may serve as indicators of affective 
states at individual [32, 61] and group levels [14, 32]. Gaze 
features have been used to identify participation styles 
[59] and assess the quality of group work [73]. Multitouch 
screens and input devices can also serve to log group 
activity [50]. For example, touch events have been be used 
to predict group performance [18, 48, 81] and stroke 
features from digital pens have been used to identify 
expertise [66] and to assess participation [59]. 

In terms of interfaces that communicate insights, prior 
research has mostly been limited to mirroring data for 
group members to decide what steps to take next. Most of 
these systems have offered simple representations of non-
verbal speech features, to enhance awareness and 
accountability of verbal participation [2]; support self-
reflection [78]; or promote social regulation [38]. Not 
many mirroring systems have included other modalities of 
data. Some exceptions include interfaces aimed at 
influencing group work by showing gaze data [73, 77]; 
touch activity [23, 81]; and quality scores of the group 
product [18].   

Overall, the studies presented above show how 
multimodal data may serve to complement the analysis of 
f2f activity. Most prior work has de-composed the 
complexity of group work, focusing on particular aspects 
of collaboration. Yet, some works have explored the 
potential of analysing multiple sources of data associated 
with more than one dimension of collaboration (e.g. social 
and task-related [18, 47, 66, 72], social and affect [32, 61], 
or social and physical aspects [7, 26, 76]). Most previous 
works have been conducted under controlled conditions 
(e.g. [7, 14, 32, 61, 76]) where it is easier to isolate aspects 
of group work. However, there is a growing body of 
research attempting to bring multimodal innovations into 
authentic scenarios, such as in classrooms [23, 56, 66] and 
the workplace [58, 63]. In sum, although some prior work 

has started to look at more than one aspect of 
collaboration, there is a timely need for a holistic 
approach that can help researchers and designers to 
associate multimodal group data with meaningful higher 
order constructs.   

2.2 Multimodal Data and Meaning  
A significant body of HCI work makes use of behavioural 
traces of human activity captured through sensors or 
input devices [17, 41]. As shown above, these traces can 
range from low level logs, such as clickstreams, to non-
mediated human action, such as eye movement or 
gestures. Logs have the benefit of being easy to capture, at 
scale, without observers influencing the activity and the 
capture process [17]. Logs can be mined, for instance, to 
cluster user behaviours [44], identify archetypal users 
[83], and visualise common paths [44]. However, while 
logs can illuminate what users do, they often say much 
less about why [17]. This is a critical methodological 
challenge if HCI is to develop principled ways to make 
sense of the vast quantities of interaction data now 
available. 

A small but growing body of literature in the field of 
Learning Analytics focuses on the question of how one 
maps “from clicks to constructs” — how low-level system 
logs can serve as proxies for the higher order constructs 
that educators and students can understand [74, 75, 84]. 
For example, far from the ‘big data revolution’ signalling 
the ‘death of theory’ [52], Wise and Shaffer [84] argue that 
when datasets are so large that spurious statistically 
significant patterns can be obtained easily, theory is even 
more important to guide interpretation. Approaches to 
bridging the traditional divide between quantitative and 
qualitative methodologies are now being developed and 
validated, such as quantitative ethnography [74].  

Theoretically-motivated analytics can be designed in a 
principled manner for higher order constructs such as 
students’ “conscientiousness” [75], or “crowd-sourced 
learning" capacity to learn in a MOOC [55]. These and 
most other examples are from contexts where a single 
modality of clickstream is associated with higher level 
constructs. In collocated scenarios, where multiple 
streams of data in different modalities can be captured 
from each person, giving meaning to the data logs is an 
even more challenging task. Current approaches to give 
meaning to multimodal, data include: i) comparing 
multimodal traces of activity with human-annotated video 
data (e.g. see review in [13]); ii) automatically coding 
multimodal data according to an epistemic frame [85]; and 
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iii) examining co-occurrence of events or associating 
certain indicators of activity with collaboration, task 
performance and learning outcomes [14, 32, 76]. Shaffer 
[74] argues that “if we want to integrate different sources of 
data, [their representations] have to span a similar amount 
of the semantic space, of the meaning, that we are 
attributing to the data” (p. 148). 

To summarise, we must go beyond solving the 
technical data fusion problem [42]; this is necessary, but 
not sufficient. The next challenge is to give meaning to 
multimodal data in terms of what people are actually 
doing.  

3 APPROACH 
In this section we present our approach to give meaning 
to multimodal group data.  

3.1 Collaboration Translucence: Foundations 
Erickson et al. [20, 21] developed the design approach of 
social translucence. This refers to computer-mediated 
systems that provide social cues that compensate for the 
loss of visibility (of socially significant information), 
awareness (of others’ presence or actions) and 
accountability (of people’s own visible actions) as a result 
of moving away from interaction in physical spaces into 
the digital realm. The term translucence foregrounds the 
intention of making selective aspects of activity visible. 
Translucent systems include the notion of a social proxy, a 
minimalist form of visualisation of people or their 
activities [21]. In the original literature [22], there were at 
least two types of social proxies: real time proxies (e.g. 
abstract representations of presence and participation in a 
chat room); and summaries of information over time that 
allowed reflection on past events to inform future actions 
(e.g. a timeline that showed past activity in a forum).  

In the last two decades, the concept of social 
translucence has been adopted by several researchers in 
HCI and CSCW [53, 62], particularly in works focused on 
online networks (e.g. [27]) and small group work (e.g. 
[87]). Moreover, social translucence has been embraced as 
an analysis framework for eliciting design requirements 
(e.g. [87]). Bilandzic and Forth [4] and Niemantsverdriet et 
al. [62] argued that social translucence should also be 
applied to f2f situations, because these are becoming 
complex multi-user, hybrid spaces enriched with a 
number of digital devices and sensors. A critical question 
remains: what needs to be made visible, that already is 
not, in a collocated situation? Although awareness can be 
easily diminished in online systems [34], various aspects 

of collaboration can also get dimmed in the physical world 
[32]. For example, in classrooms, it is challenging for 
teachers to closely monitor multiple groups at once [37] 
and for students to evidence skills development. In other 
settings, keeping fluid awareness may also be challenging 
if the same members of the team are not present in all the 
opportunities of physical contact [71] such as in 
emergency rooms. Awareness can also wear-off as time 
passes, especially in fast-paced group settings [40] or in 
meetings [2].  

Most work based on social translucence has been 
limited to only considering quantitative social aspects 
(both in online and in the few f2f settings [2, 15, 38]). This 
is despite the fact that Erickson et al. [20] originally 
suggested that future work should look at modelling more 
complex traits of group behaviour (e.g. by looking at the 
content of conversations) and also tracking and 
visualising social behaviours over time. In next section, we 
discuss theoretical perspectives that serve to provide a 
definition of collocated collaboration translucence.  

3.2 Dimensions of collaboration 
The social dimension is clearly critical in group work, but 
other dimensions are equally important. There are various 
theoretically-inspired, practical frameworks in HCI that 
decompose collaborative activity into multiple 
dimensions. For example, the activity-based computing 
(ABC) framework [3] decomposes group activity into 
tasks, materials, time, and users. The Blended Interaction 
framework [35] structures the CSCW design space into 
four spaces: individual and social interaction, the task, and 
the physical space. More recently, an approach based on 
the Activity-Centred Analysis and Design (ACAD) 
framework [49] provided a three-dimensional view of 
group activity: (1) set, which includes the physical and 
digital space and objects; input devices, screens, software, 
material tools, furniture; (2) epistemic, which includes both 
implicit and explicit knowledge oriented elements that 
shape the participants’ tasks and working methods; and 
(3) social, which includes the variety of ways in which 
people might be grouped together (e.g. dyads, trios); 
scripted or emerging roles, and divisions of labour.  

A fourth dimension not included in the frameworks 
above, but that has been identified in numerous 
multimodal group analytics studies, is 4) the affective 
dimension. Affective aspects have been identified in 
foundational theoretical work [82] as critical to 
understand CSCW work, even though it can often remain 
invisible [68]. As discussed above, it is possible to shed 
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Figure 2: Multimodal matrix  

 
 
 
 
 
 

light on affective aspects using video recordings or 
physiological sensors.    

To summarise, a preliminary definition of collaboration 
translucence should include not only social aspects, but 
also making evidence of collaboration translucent 
according to the multiple, intertwined dimensions of 
group activity: 1) physical, 2) social, 3) epistemic, and 4) 
affective). Before diving into possible data representations 
that can serve as collaboration proxies, we need to 
perform a fi rst methodological step which would be to 
understand how to give meaning to complex, multimodal 
data.  

3.3 The Multimodal Matrix 
Quantitative ethnography [74] is a method that lets 
researchers use statistical methods on fieldnotes, 
interviews and other kinds of qualitative data which has 
been mainly applied to build epistemic and social 
networks [25]. Inspired by this concept, we introduce our 
approach to grounding quantitative data in the semantics 
derived from a qualitative interpretation of the context 
from which it arises. We propose a conceptual data 
representation termed the multimodal matrix (Figure 2), 
comprising the following conceptual elements: dimensions 
of collaboration, multimodal observations, segments, and 
stanzas.  

Dimensions of collaboration. These explain the complexity 
of group activity (groups of columns in Figure 2). As an 
illustration, we selected the dimensions from the ACAD 
framework (plus the affective dimension) as a set that can 
be considered. While not all dimensions need to be 
considered in every single multimodal study, having a 
systemic view of the key aspects of group activity can 
help researchers and designers to justify the emphasis of 
some kinds of connections over others [33] and to provide 
meaning to multiple sources of data used together. 

Multimodal Observations. Each modality of data can be 
coded into one or more kinds of information that we will 

call multimodal observations (columns in Figure 2). Each 
can be associated with a dimension of collaboration. For 
example, data obtained from the discourse or task-related 
actions would be associated with the epistemic dimension; 
communication data with the social dimension; logs of 
tool/space usage with the physical dimension; and 
physiological data the affective dimension. Some 
observations may span more than one dimension, but, 
most likely are associated with one dominant dimension. 
For example, dialogue content would be associated with 
the epistemic dimension, but quantitative features such as 
turn-taking with the social. This is a modelling decision, 
depending on one’s perspective. Critically, each column 
should only contain one kind of information and only one 
term can be used in each (ontological and terminological 
consistency [74] p. 129). These columns are where each 
stream of data is coded into meaningful information based 
on theory, the learning design or pedagogical intentions, 
expert knowledge, domain knowledge. For example (see 
Figure 2, column 4), instead of simply logging raw 
accelerometer data, the data is encoded categorically 
(low/medium/high) in terms of a nurse’s physical intensity 
while performing a sub-task. The meaning ascribed to the 
data would obviously be quite different for people in a 
meeting, or children playing outdoors. 

Segments. Based on quantitative ethnography [74], 
segments are the smallest units of meaning considered for 
analysis (rows in Figure 2). The information contained in a 
row depends on the context. For example, in a highly 
qualitative analysis (e.g. discourse analysis) each line 
could correspond to an utterance. In multimodal analytics 
cases, many things would be happening in between one 
utterance and another (e.g. gestures, changes in eye-gaze, 
changes in physiological states). Each line might instead 
represent a time window (e.g. 100 milliseconds, 1 second; 
see second column in Figure 2) or critical incidents in the 
activity. As before, all information relevant to each part of 
the sample (e.g. a small window of time) should be in the 
same row and all rows should contain the same kind of 

information (evidentiary and ontological 
consistency [74] p. 167).  

Stanzas. Segments can be grouped according to 
criteria to show meaningful relationships. In 
discourse analysis, a stanza might correspond 
to a number of utterances before or after a 
particular incident. In collocated group work, a 
stanza might correspond to well defined phases 
in the collaborative task (e.g. see rows grouped 
by phase Figure 2). As shown in the next 
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section, grouping the rows according to meaningful task 
phases gives meaning to the multimodal data streams. In 
collaborative learning tasks, these phases are sometimes 
made explicit in the learning design (e.g. see collaboration 
scripts [70]).  

We next illustrate the application of our approach to give 
meaning to multimodal group data in two f2f settings.  

4 ILLUSTRATIVE STUDIES 
Healthcare simulations play an important role in the 
development of teamwork, critical thinking and clinical 
skills and prepare nurses for real-world scenarios. 
Students from the Bachelor of Nursing at the University of 
Technology Sydney, experience many hypothetical 
scenarios across different stages of their professional 
development. In these scenarios students, acting as 
registered nurses (RN), provide care to a patient, who has 
been diagnosed with a specific condition. Manikins, 
ranging from newborn to adult, give students the 
opportunity to practise skills before implementing them in 
real life. Simulations are sometimes recorded and played 
back to students so that strengths and areas for 
improvement can be observed in facilitated debriefing 
sessions [31]. In practice, achieving this is challenging due 
to time and logistic constraints, hence the need for 
summary overview representations that can support 
reflection upon practice. 

In this section we describe two studies in authentic 
nursing settings. Study 1 was conducted in an immersive 
simulation room, and Study 2 in a simulated hospital 
ward-classroom. Both were conducted within the 
framework of the university’s curriculum which 
emphasises patient-centred care (PCC) and teamwork — 
higher order constructs that we target. This means that 
students must learn not only technical skills, but also 
develop communication skills to enable them to deliver 
professional care.  

4.1 Study 1 
This study was conducted as part of an optional program 
for nursing students to gain further experience in 
academic research and healthcare practice. As part of this 
program, a scenario was designed by a teacher in the 
context of caring for a patient requiring basic life support. 
Nine undergraduate nursing students (6 female and 3 
male), aged from 20 to 53 years (avg= 34, std=10), 
participated in the study. According to their own time 
availability, they were randomly organised into three 
teams (A, B and C), of four students (2 females and 2 

males), three (2 females and 1 male) and two (females) 
students each.  

Learning design. The manikin was programmed by the 
teacher to deteriorate over time, dividing the task into two 
phases. Phase 1 involved the assessment of a patient’s 
chest pain, including four sub-tasks: i) give oxygen 
therapy; ii) assess chest pain; iii) give medication; and iv) 
connect an electrocardiography (ECG) device. In Phase 2 
students were expected to perform cardiopulmonary 
resuscitation (CPR) on the patient suffering a cardiac 
arrest. Each student was randomly asked to enact one of 
four roles (RN1-4) with an associated set of subtasks. RN1 
was team leader, with RNs 2-4 responsible for subtasks ii, 
iii and iv, respectively. Depending on the number of 
students, the subtasks were distributed among the roles. 
Each simulation lasted an average of 9.5 minutes (std=0.7). 
Phase 1 lasted 5 minutes (std=0.8) and Phase 2 4.5 minutes 
(std=0.4).  

Apparatus. Sessions were conducted in an immersive 
simulation room. Students were the only people in the 
room (Figure 1, left). The room is equipped with a control 
room behind a one-way mirror from which a teacher can 
control the patient’s state and ‘voice’ via a microphone 
connected to a speaker located inside the manikin’s 
mouth. Students’ localisation around the manikin was 
captured automatically through ultra-wide band wearable 
badges (Pozyx.io). These provide an error rate of 10 cm, 
recording x and y position of each student at 2Hz. We 
applied a Kalman filter to improve further calculations. 
Some student actions were automatically logged by the 
high-fidelity manikin (Laerdal Simman 3G), including: 
placing the oxygen mask, setting oxygen level, attaching 
blood pressure monitor, reading blood pressure, 
administering medicine, attaching the ECG device, 
starting CPR, and stopping CPR. A microphone array 
(Microcone) was used to detect nurses’ conversations. 
Physiological wristbands (Empatica e4) were worn by 
students. These include a photoplethysmography sensor, 
an electrodermal activity sensor, a 3-axis accelerometer, 
and an optical thermometer. For this study, we 
automatically recorded EDA (at 4Hz) and acceleration (at 
32 Hz) streams of data captured by the first two sensors. 
All the sessions were video-recorded. We synchronised 
the data streams at a 1 Hz, down sampling data streams 
from sensors that had a higher frequency. 

Data gathering and analysis. Two researchers and a 
teacher were present in each session. Besides the data 
outlined above, other data gathering included observation 
notes and recordings of the group debriefing. These were 
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Figure 3: From multimodal logs to constructs in healthcare 

transcribed for analysis. Data analysis involved two 
researchers independently screening the video recordings 
of the sessions looking for moments of interest that could 
serve to illustrate the potential use of the collaboration 
proxies (1, 2 and 3) and to describe individual nurses’ 
behaviours. 

4.2 Study 2 
The second study was conducted in an authentic setting as 
part of the regular classes of the third-year undergraduate 
unit, Integrated Nursing Practice. Each class typically has 
20-30 students working in teams of 4-6. Classrooms are 
equipped with 5-6 patient beds like the one used in Study 
1 (Figure 1, right). The study focused on six 3-hour classes 
conducted in week 3 of semester 2, 2018. Only the activity 
occurring around one bed was recorded in each class, to 
allow 1 team to opt in for the study. Thus, the study 
involved six teams of 5 students each (teams 1-6), with a 
total of 30 students (27 female and 2 male) and 2 teachers. 
Due to limitations imposed by the authenticity of the 
context and privacy agreements, no other personal 
information was recorded.  

Learning design. The coordinator of the unit designed a 
scenario that involved a patient experiencing an adverse 
drug reaction. Students were expected to perform the 
following tasks: i) assessment of chest pain symptoms, ii) 
administration of medication, iii) management of adverse 
drug reaction and iv) conducting an ECG. Additionally, 
each student was asked (but not required) to play one of 3 
possible roles: a team leader, secondary nurses, and the 
patient. The teacher assumed the doctor role. 

Apparatus. The manikins available in this setting (Laerdal 
Nursing Anne) are similar to the one used in Study 1 but 
of lower fidelity (the range of actions that it can log are 
limited to detect whether nurses check the patient’s vital 
signs). To overcome this technical limitation, we 
developed a mobile observation tool, synchronised with 
the other sensors, for a researcher to log all the critical 
actions, as defined by the teacher, including: placing the 

oxygen mask, preparing intravenous (IV) 
fluids, administering IV fluids, reading blood 
pressure, writing observations in charts, 
attaching the ECG device, stopping the IV 
fluids and calling the doctor. Each of the four 
active students in the scenario worn a 
localisation badge and a physiological 
wristband as in Study 1. Individual audio was 
captured using lapel microphones. The 
student enacting the patient was not tracked 

as it was commonly sitting on a chair at the bed side. The 
teacher was also tracked but her/his data were not used 
for the purpose of this analysis.  

Data gathering and analysis. Two researchers were present 
in each classroom session while one of the two teachers 
delivered the regular class. In addition to the multimodal 
data gathering, each team was invited to participate in a 
30-minutes semi-structured follow-up interview a week 
after their class (week 4). Out of the 30 students, 18 
participated in these sessions in which they explored one 
of the collaboration proxies (proxy 4 to be presented in 
section 5.4). We structured the interview into three main 
parts, using three key constructs from social translucence 
[87] to structure the interview: 1) visibility, in which 
students were expected to re-construct their activity based 
on the proxy and they were asked if they could identify 
their own actions represented in it; 2) awareness, in which 
students were asked whether they could reflect their 
practice individually and as a group; and 3) accountability, 
in which students were asked about who else should have 
access to the proxy and for what purposes. All group 
discussions were audio recorded for further analysis. 

4.3 Giving meaning to multimodal data  
Each data stream captured by the sensors and devices in 
our studies was encoded into columns in the multimodal 
matrix based on meaning elicited from subject matter 
experts, the learning design, or literature. The multimodal 
observations used in our studies, and their relationship 
with the dimensions of collaboration, are depicted in 
Figure 3, and described as follows:    

Embodied strategies and proximity. Embodied strategies 
during high-stakes teamwork scenarios are critical in 
healthcare education [51]. Nurses are expected to be 
positioned in strategic areas when it comes to an 
emergency. Based on interviews with four nursing 
teachers, and related work [86], we identified five 
meaningful zones which are commonly associated with a 
range of actions nurses commonly perform (see Figure 4): 
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i) the patient’s bed, for cases in which nurses were located 
on top of or very close to the patient; ii) next to patient, for 
cases in which nurses were at either side of the bed; iii) 
around the patient, for cases in which nurses were further 
away from the bed, from 1.5 to 3 meters away of the bed); 
iv) bed head; which is an area where a nurse commonly 
stands to clear the airway (colloquially known as bagging) 
during a CPR procedure; and v) trolley area, for cases in 
which nurses were getting medication or equipment (a 
localisation badge was attached to the trolley).  

Proximity (for i and v) and localisation (for ii, ii and iv) 
data captured during study sessions was automatically 
encoded into these meaningful zones. Five columns per 
nurse were added to the multimodal matrix 
representation: RN(#)_patient, RN(#)_next, RN(#)_around, 
RN(#)_bagging and RN(#)_trolley. Each row has a value of 
“1”, if that zone is occupied by a nurse, or “0” otherwise. 
The association of the zones at a specific period of time is 
mutually exclusive (e.g. [0,0,0,1,0] for a nurse in the 
‘bagging’ zone). 

 
Figure 4: Zones of interest around the patient 

Intensity of physical activity. From the literature [6] we 
know that nurses’ physical activity varies from light (e.g. 
walking, talking, manipulating medical tools) to moderate 
(e.g. performing a CPR) intensity. We defined three levels 
of physical intensity for our study: static, light and 
moderate, where the highest intensity corresponds to 
performing CPR. Inspired by related work [51], to 
determine the level of intensity we first applied a moving 
average filter on the raw acceleration data streams from 
the wristbands to remove signal noise (window sample = 
32). Then, through visual inspection of these data, we 
defined thresholds for each physical intensity level taking 
values corresponding to CPR activity as the maximum 
level of intensity. One column per nurse RN#_intensity 
was added to the matrix, containing a value of 1, 2, or 3 
for static, low, and moderate intensity in each cell. 

Actions. Based on the learning design, we matched the set 
of expected actions and procedures (see sections 4.1 and 
4.2.) expected to be performed during the simulation with 

the actions that could be captured, either automatically by 
the manikin or manually logged by an observer. In the 
matrix representation, actions were encoded into a 
column called action with a keyword per action performed 
and who performed it (if this information was available).  

Speech activity and interaction. Verbal communication 
clearly plays an important role in the management and 
coordination of patient care. Nurses are encouraged to 
coordinate tasks, anticipate actions, and report 
information to the medical team in order to construct 
awareness [86]. Non-verbal metadata about speech, in the 
form of speech onset/offset, may shed light on the team 
performance [56, 77]. We attempted to capture hands-free 
speech activity via a microphone array in Study 1. Given 
the nature of the simulation, it was hard to obtain clean 
streams of voice that could be automatically analysed 
through speech detection algorithms due to noise 
generated by clinical instruments. For this reason, we used 
lapel microphones in Study 2. In the proxies to be 
presented in the next section, we reconstructed the dataset 
of Study 1 by manually transcribing and synchronising 
the video recording. As a result, one column per nurse and 
for the patient was added to the multimodal matrix (as 
RN(#)_talking and PT_talking respectively) to indicate the 
presence (1) or absence of speech (0) per second. We also 
added one column per nurse and for the patient to 
indicate who was listening (RN(#)_listening, PT_listening), 
if they were in close proximity to the person speaking. For 
example, a row [0,1,0]; [1,0,1] (assuming columns 
correspond to R1, R2 and R3 for speaking and listening 
actions respectively) means that RN1 and RN3 are listening 
to RN2.  

Electrodermal Activity (EDA) peaks. It has been identified 
that physiological data can be effectively used to aid 
nurses in recalling confronting experiences in order to 
develop coping strategies [57].  An increase in EDA, 
specifically, is typically associated with changes in arousal 
states, commonly influenced by changes in emotions, 
stress, cognitive load or environmental stimuli [8]. When 
a change in the level of arousal is produced, physiological 
responses are activated in our body (e.g. increasing sweat 
production, heart rate, and blood pressure) [9]. We 
automatically identified peaks in EDA data using a tool 
called EDA Explorer [79]. A peak in skin conductance was 
defined by a minimum increase of 0.03 µs as suggested in 
the literature [5]. We added a column to the multimodal 
matrix called EDA peaks. Each cell contains a value of “1” 
when a peak was detected or “0” otherwise.  
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5 DESIGN AND ANALYSIS 
Having established the multimodal matrix modelling 
methodology, we now present exemplar collaboration 
proxies that can be generated to help make collaboration 
translucent. Proxies 1-3 present information from Study 1, 
focusing (respectively) on (1) how nurses communicated 
with each other and with the patient; (2) how they 
occupied the simulation space; and (3) how they may have 
experienced physiological arousal. Proxy 4 presents the 
critical actions performed by nurses during the simulation 
in Study 2. For each proxy, we explain its design, the 
dimensions of collaboration that are made visible; the 
columns in the multimodal matrix used for the proxy; and 
evidence from observations and interviews with the 
nursing students.  

5.1 Proxy 1: collocated social interaction  
This proxy aims to depict to what extent the care provided 
by the nurses during the simulation was “patient-centred”. 
This proxy integrates the talking and listening columns 
from the multimodal matrix. Segments are grouped into 
two stanzas corresponding to phases 1 and 2 of the 
simulation. In phase 1 it is expected that nurses engage in 
conversation with the patient who is still conscious. In 
phase 2, the patient goes into cardiac arrest and needs 
CPR. The nurse performing the CPR is encouraged to 
count aloud the chest compressions and coordinate with 
other nurses to synchronise the airway clearance and 
defibrillation.  

Design. Figure 5 shows six sociogram-based proxies of 
social interaction for teams A, B, and C, over phases 1 and 
2. This proxy resembles previous social proxies in online 
and collocated settings [2, 15, 22, 38], using a typical 
undirected network representation [25]. Each node in the 
proxy represents the nurses and the patient in the 
simulation. The size of each node represents the amount 
of speech activity, while the thickness of the edges 
denotes the number of verbal interactions (utterances) 
between people. Analysis. The social proxies of phase 1 
(Figure 5, top) suggest that all three teams established 
patient-centred communication, with at least one nurse 
interacting with the patient in each team. Most of the 
communication was mediated by the team leader while 
other nurses remained almost silent (depicted by the small 
size of other nodes). The only exception is some 
conversation among RN2, 3 and 4 in team A. By contrast, 
once the patient lost consciousness, the communication 
dynamics in each team change completely. The proxies for 
phase 2 (Figure 5, bottom) show that RN2 (who was 
prescribed with the CPR lead role) dominated 

communication in all teams.  Interestingly, members of 
team A were more communicative than those in team B. 
For instance, we can notice that all nurses from team A 
interacted with each other to some extent, while in team 
B, RN3 had less speech activity and interaction with other 
nurses. To illustrate this behaviour, we show two excerpts 
in teams A and B in equivalent episodes during phase 2 in 
which team members had to coordinate clearing the 
airway, performing the CPR, and one nurse should hand 
over the CPR procedure to another nurse. 

Excerpt 1: Nurses in Team A communicating effectively 
1 RN2 ð Leader: Put the head up. 
2 Leader ð RN2: one, two (giving oxygen to the patient) 
3 RN2 ð Everyone: I am going to do one more… twenty-one, twenty-two, 

twenty-three … (doing CPR and counting aloud) 
4 RN2 ð RN3: You take the next round please.  
5 RN3 ð RN2: Ok! 
6 Leader ð Everyone: one, two (giving oxygen to the patient) 
7 RN4 ð Everyone: Guys, I am going to start, I am going to do the defib 

now. 
Excerpt 2: Nurses in Team B communicating less effectively  
1 Leader ð RN2: I am going to check the airway. 
2 RN2 ð Leader: …and I will need this one (pointing to the aging mask) …so, 

should I start? 
3 Leader ð RN2: Yes! 
4 RN2 ð RN1: one, two(doing CPR and counting aloud)…twenty-nine, thirty 
5 Leader ð Everyone: one, two (giving oxygen to the patient) 

 

The first excerpt suggests that members of team A were 
coordinating their activity, verbally communicating what 
each will do next (a good practice in nursing). This is 
quantitatively presented in the proxy of team A (Figure 5, 
bottom-left) as edges between all nodes, with the thickest 
edges connecting RN2 with other nurses. RN3 did not 
count aloud during the CPR as depicted by the small node 
in the proxy. The second excerpt shows how only two 
nurses in team B talked to each other. From the videos, we 
confirmed that the other nurse (RN3) was standing away 
from the bed, either waiting for instructions or just 

   
Figure 5: Social proxies in the physical space. The orange node 
represents the patient and blue nodes the nurses. Edges 
represent communication among nurses and with the patient.  
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observing the situation. For the case of team C, given that 
there were only two nurses, it was expected to only see 
communication being led by the nurse performing the 
CPR (RN2).  

To summarise, we propose that this proxy, suitably 
segmented temporally (e.g. before/after a critical incident 
in order to expose changes), highlights behaviours at both 
individual and team levels which can help provoke 
reflection by participants or coaches.  

5.2 Proxy 2:  localisation and proximity  
This proxy aims to depict whether the embodied strategies 
that nurses enacted during the high-stakes scenario were 
physically patient-centric. The proxy integrates indoor 
localisation and proximity data encoded into meaningful 
zones columns in the multimodal matrix.  Segments were 
also grouped into phases 1 and 2. The expectation is for at 
least one nurse to remain in close proximity to the patient 
who is asking for help.  

Design. Figure 6 shows the physical localisation and 
proximity for the three teams in Study 1. This proxy 
resembles a typical state diagram representation where 
the size of state (circle) represents the time that each 
nurse spent in each meaningful zone (e.g. the node patient 
indicated that the nurse was in very close proximity or on 
top of the patient). The edges represent the number of 

transitions from one zone to another. This proxy can be 
generated per individual or for the whole team.  

Analysis. The proxies of the teams during phase 1 (Figure 
6, top) suggest that members of teams A and C were closer 
to the patient compared with team C. For team B, nurses 
were mostly around and further away from the patient, 
also showing more transitions between the next and 
around zones. Interestingly, we can triangulate evidence 
from the social proxy (described above) and suggest that, 
whilst all teams were assessing the patient’s symptoms, 
nurses in team A were more engaged with the care of the 
patient by occupying a closer distance, and 
communicating more with him and among themselves.  

Nurses in teams B and C were closer to the patient than 
team A in phase 2 (see large orange nodes in Figure 6, 
bottom). Members of team A occupied the space next to 
the patient to a greater extent. The analysis of the videos 
explained this behaviour. For team A, RN2 and RN3 
performed the CPR technique next to the patient (Figure 7, 
left), a suboptimal posture that may result in a poor CPR 
[64]. By contrast, teams B and C performed CPR on top of 
the patient or kneeling on the bed (Figure 7, centre and 
right), postures associated with better quality CPR. We 
triangulated this information with the CPR information 
recorded by the manikin and included in the multimodal 
matrix. CPR scores from the three teams revealed that 
while none performed a good CPR in terms of 
compression depth and hand positions, the compression 
rate was appropriate for teams B and C (>100/min). The 
proxy of team C also shows a small node for the bagging 
zone, in which one of the nurses should have been 
clearing the airway as other teams did (see Figure 7, left 
and centre). This issue was raised by the teacher during 
the debrief. 

In sum, this proxy can help make visible how team 
members made use of the physical space. This can be 
helpful for teachers to discuss in detail how certain 
clinical procedures were performed. 

5.3 Proxy 3: electrodermal activity peaks 
This proxy aims to help nurses reflect on affective traits 
that they may have experienced, based on detected peaks 
in their EDA [69], to consider potential coping strategies 
[57]. The proxy draws on both EDA peaks and levels of 
physical activity, since high physical activity may 
decrease the reliability of EDA modelling [67]. Th us, by 
triangulating EDA with wristbands’ accelerometer data, 
and whether the nurse was performing CPR (captured by 
the manikin) it is possible to attribute certain EDA peaks 

   
Figure 6: Physical localisation and proximity proxies. Each 
circle represents one zone of interest around the patient’s bed, 
while the links are the transitions among zones.  

 
Figure 7: Three different ways in which nurses performed 
chest compressions: by the bed (team A), on top of the bed 
(team B), and on top of the manikin (team C). 
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Figure 9: Timeline proxies of EDA indicating: EDA peaks 
(orange dots); b) physical intensity (represented by different 
shades of blue); and c) EDA peaks that may be affected by 
intense physical activity (grey dots).  

 

to intense activity, rather than to authentic sources of 
arousal.  

Design. Figure 9 shows exemplars of this proxy using data 
captured in Study 1. Each row relates to a team member 
(team leader and RN2-4). Orange dots represent the EDA 
peaks that may be associated with students experiencing 
arousal in certain moments during the simulation. The bar 
segments represent three levels of physical intensity 
(static, light and moderate) by different shades of blue 
(from light to darker). The two red bars indicate the 
beginning of phases 1 and 2.  

Analysis. These proxies indicate that over the course of the 
whole simulation, nurses either experienced increased 
arousal, or very low or none. For example, in team A 
(Figure 9, top-left proxy) RN4 does not show any EDA 
peaks (orange dots), the team leader and RN2 show a few, 
but RN3 has many. A similar situation emerged in teams B 
and C where only one team member experience peaks 
(RN2 and the leader respectively). Th e measure of high 
physical activity (especially present in phase 2) seems to 
be helpful in accounting for peaks that may be influenced 
by increase motion during the CPR.  

To explain the information provided by this proxy, we 
qualitatively analysed the videos. A researcher took the 
timestamps where the arousal peaks were identified and 
used them to navigate through the video and annotate 
what students were doing and how engaged students 
were. This analysis revealed that the nurses with more 
EDA peaks displayed signs of engagement, worry, or 
anticipation. By contrast, nurses with fewer or zero peaks 
were either calm (e.g. team A – RN 4), disengaged (team B 
– RN3), or laughing with peers (team A – leader, RN2, 
RN4; team C – RN2). In team A (Figure 9, top-right), RN2 
and leader nurses were chuckling, whilst RN 3 (the nurse 
with most EDA peaks in this team) looked focused. For 
team B (Figure 9, middle-right), the leader and RN3 

appeared to be calm and relaxed; whilst RN2 looked very 
concentrated and worried about the patient. In team C 
(Figure 9, bottom-right), RN2 was chuckling, whereas the 
leader seemed to be focused. 

In sum, the automated detection of EDA states, and its 
further filtering using information about physical activity 
to dismiss potential false positives, may be helpful during 
the debrief for students to reflect on their own 
performance, or for teachers to open a conversation about 
nurses coped with different challenges.  

5.4 Proxy 4: team timeline 
This proxy aims to make visible the order and timing of 
the epistemic actions and procedures performed by 
nurses. It was deployed in the six authentic classroom 
sessions (Study 2) for supporting post-hoc reflection. This 
proxy utilises the actions columns from the multimodal 
matrix.  

Design. We generated a timeline proxy that includes the 
actions, the time when the actions were enacted and who 
performed each. Figure 8 depicts an example of a timeline 
of team 5. The timeline contains one line per role. The red 
lines delimit the beginning of phase 1 and phase 2, and 
each action performed by nurses appears as a blue dot.  

Analysis. As detailed above, we analysed our findings 
grouped around the three themes from social 
translucence: visibility, awareness and accountability as per 
in [62].  

Visibility. In all the six teams, students individually 

 
Figure 8: The team timeline as an epistemic proxy, 
depicting each student’s actions in the simulation.   
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and collectively reconstructed the simulation following 
the timeline from left to right. This behaviour endorses the 
visibility property of the proxy as students could easily 
identify themselves by connecting the timeline events 
with their own experience. For example, one student 
stated the following: [Alice] was the patient, you were the 
leader and I am RN2 because I was preparing the fluids” 
(team 3, RN2). In some cases, the proxy helped students to 
recall and discuss actions they performed during the 
simulation. For example, a member of team 1 asked “did 
we check the pulse?” (RN3) whilst inspecting the timeline. 
Another student, pointing at the action “check pulse”, 
replied: “yeah, we did it” (RN1). 

Awareness. Students highlighted what they thought 
were correct and incorrect instances of teamwork 
performance (e.g. coordination, leadership, time 
management). Students in teams 1, 2 and 5 recognised 
they reacted fast to the most critical event (patient’s 
allergic reaction) whilst students in 4 teams agreed that in 
future sessions, they should improve their reaction time 
(e.g. stop the IV fluids straight away). Students in teams 1, 
2, 3 4 and 5 indicated that they were “coordinated” and 
“working as a team”, by pointing in the timeline where 
similar actions were done, or actions were grouped. 
Seeing that they were all consulting documents at once, a 
student remarked: “It’s interesting to see that we were all 
looking for information at the same time. That might show 
that we discussed, and worked as a team. If you would see 
that there’s people that are looking for information at 
different time, that wouldn’t make sense” (team 1, RN3).  

Some students in team 2 performed their own 
‘multimodal fusion’, reading meaning into combinations 
of actions. For example, two students associated actions 
with roles across time, as follows: ”it  seems like a lot was 
done in clumps, you [RN3] were talking to the patient, 
looking for information while others were doing the 
observations, that seems practical to me” (the patient); and 
“while RN4 and RN2 were doing the fluids I was staying 
with the patient. It is good to step back and look at what 
each person was doing, one thing at the same time, I think it 
shows you how your worked as a team” (RN3). As another 
example, students in 3 teams reflected on their poorly 
developed leadership skills, realising they should have 
delegated more tasks to their colleagues. One team leader 
noted: “I didn’t delegate actions, when I was looking for the 
doctor” (team 1, leader). 

Interestingly, some students inferred a lack of 
communication skills, even though the timeline has no 
explicit communication events: “two nurses were 

measuring the blood pressure (pointing to the timeline where 
those actions appeared) and then, after a while a third came, 
which means that there was no good communication” (team 
1, RN3). If the students had been able to access the 
sociogram visualisation for that moment (not available at 
the time of evaluation), this might have added further 
insights.  

Accountability. Students’ discussions revealed mixed 
preferences in terms of who should be able to see this 
proxy and for what purpose. A common view among all 
students was that they would like the teacher to guide the 
reflection using the timeline to confirm procedures, 
reinforce knowledge and suggest improvements. One 
student explained this as follows: “Information needs to be 
confirmed by the teacher. She should confirm what we did, 
what should be done and what can we improve for the next 
practice” (team 1, RN3). Students also agreed that all 
nurses in a team should be permitted to view and reflect 
on their performance. For example, one student reported 
that: “If we are working together then it’s good to [explore 
the timeline] as a group. If each look at it separately each 
will have their own stories.” (team 3, RN2). However, two 
divergent perspectives emerged when discussing timeline 
access to other teams. Students in four teams argued that 
sharing their timelines with others could leverage peer 
discussion, by comparing and contrasting their 
performance. By contrast, two teams raised concerns 
about how other groups would react i.e. judging, not 
taking the reflection seriously. One student said “probably 
[another group] will laugh at this” (team 1, RN2). Finally, 
all students agreed that sharing the information with the 
whole classroom immediately after the simulation would 
help them better reflect on their practice.  

6 DISCUSSION AND CONCLUSION 
As Dewey [11] famously noted, “We do not learn from 
experience… we learn from reflecting on experience.” (p.78). 
Once an experience can be examined from different 
perspectives, and reflected upon, it can be improved. One 
can do this as a personal activity in the mind’s eye, 
although memory is imperfect and benefits from memory 
aids. Moreover, when that experience is cognitively and 
emotionally intense, and a function of complex teamwork, 
only some of which one had control over, there is 
arguably a critical role for external aids to help replay that 
experience in ‘slow motion’, ideally highlighting salient 
features that deserve closer attention. Elite teams have 
several coaches who call on advanced analytics to 
augment their capacity. For the majority, the dedicated 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 39 Page 12



 

 

coaching team will remain a dream, but collaboration 
analytics may have an increasingly important and 
interesting role to play. 

This paper has extended the concept of social 
translucence for online systems, by operationalising the 
new construct of collaboration translucence for collocated 
teamwork, using multimodal traces from interactions 
between people and artefacts. The goal is to move such 
activity from being ephemeral, and largely opaque to 
computational analysis, to a translucent phenomenon 
from which selected features of interaction can be 
captured and rendered visible, for the purposes of 
learning.  

This paper looks beyond the important multimodal 
data-fusion challenge of integrating information from 
disparate sensors and devices [42]. Assuming this can be 
accomplished, the interpretive challenge remains: how can 
someone make sense of all the data? Our approach is to 
ground the data theoretically (in this paper, along physical, 
epistemic, social and affective dimensions [30, 68]), and 
contextually (in these studies, using concepts from 
healthcare simulation). The mapping from low-level data 
to meaningful constructs is modelled using a multimodal 
matrix (Figure 3), from which collaboration proxies can be 
generated, providing views of what has taken place in a 
session. This has given us a way to operationalise a 
concept such as patient-centeredness in the way a team 
engages on the ward. Different visualisations (proxies 1-4), 
attending to different aspects of the activity, invite 
exploration and interpretation. 

In sum, other researchers and designers can build on 
our approach by following the next steps: i) defining the 
higher order constructs that groups are aimed to develop 
or that can serve to identify ‘good’ groupwork or 
teamwork practice for the particular context; ii) selecting 
a framework of collaboration or teamwork to identify the 
multiple, intertwined dimensions of collaboration (i.e. set, 
social, epistemic, affective) that embrace the complexity of 
collaborative activity; iii) after fusing and synchronising 
the multimodal data streams, each modality can be 
encoded into one or more meaningful multimodal 
observations, defining the columns of the matrix; iv) 
selecting the unit of analysis, for example, utterances, a 
time window or critical incidents, that will define the 
meaning of each row (segments) of the matrix; v) selecting 
how segments relate to each other (to group them into 
stanzas) based on the learning design or by expert 
knowledge to facilitate associating multimodal 
information with higher order constructs for a specific 

part of the activity; v) once the multimodal matrix is filled 
with encoded, meaningful multimodal data, this 
information can be visualised (e.g. via proxies) or mined 
(e.g. applying rules, sequence pattern mining or other 
machine learning algorithms). 

This work raises several issues for discussion.  

Technical infrastructure. In our healthcare teamwork 
examples, all proxies can be automatically generated by 
applying rule-based algorithms on the multimodal data 
streams encoded into the multimodal matrix (see 
preliminary work in [19]). The only exception is proxy 1. 
For this proxy, while the transcript was manually created 
and analysed, we anticipate that this step will be 
automatable in the near future, with the use of personal 
microphones for personally attributable, and rapid 
improvements in speech-to-text services [54]. The 
infrastructure described is experimental, but an explicit 
part of the project is to examine strategies to embed it 
economically in the regular infrastructure.  

Combining proxies. Aligning views of communication 
and proximity (proxies 1-2) might provide more complete 
information, clarifying the locational context in which 
nurses talked with each other, and their proximity to 
patients when talking to them. 

Multimodal matrix. This modelling approach has helped 
us apply the insights from “quantitative ethnography” [74] 
to our challenge, enabling us to automate the coding of 
quantitative, low-level data into qualitative, higher order 
categories that are grounded in generic features of all 
teamwork, and the specifics of the particular activity. 
Additional columns could be added manually to the 
matrix, from conventional post hoc qualitative analysis 
that codes combinations of events. 

Implications for nurse education. Our proxies address a 
gap identified in the literature on simulation for nursing 
education. Supports reflective professional practice [45] 
and facilitating evidence-based assessment [16] are two 
areas that will be explored by contextualising the proxies 
in relation to ‘good’ clinical practice.  

Interpretation and assessment. This work has been 
undertaken in the context of healthcare simulation, but we 
are optimistic that this could generalise to other contexts 
such as professional development. The approach is 
fundamentally about improving a team’s ability to reflect 
on its work. We were intrigued to see how students read 
meaning into the team timeline, perhaps raising the issue 
for some readers of whether they were ‘correct’. We note 
first of all that in the original work on social translucence, 
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there was never the intention that a proxy had one correct 
meaning, and we adhere to that principle in this work. In 
highly complex forms of human interaction such as this, 
the purpose of proxies is to provide a meaningful sense of 
what has been taking place, but it is not reasonable to 
expect a human – far less a machine – to know for sure 
what this signifies.  

To conclude, there is more going on than is visible to 
the machines. Our goal is to improve the resources for 
interpretation where none existed before, in order to 
provoke more productive reflection and discussion, 
grounded for the first time in empirical evidence. In 
educational terms, therefore, collaboration proxies should 
serve as scaffolds for formative assessment (feedback for 
ongoing learning) rather than summative assessment 
(which assigns a grade). Conceivably, as the evidence base 
grows in size and quality, patterns in the data may be so 
highly correlated with strong or weak teamwork that they 
come to serve as proxies for quality. Until then, the 
priority is to further evaluate how students and educators 
engage with the representations, and how they can be 
improved. 
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